مرجع مواد شیمیایی ایران
اطلاعات عمومی استونیتریل
  • نام شیمیایی

    • استونیتریل

    • Acetonitrile

  • مترادف ها
    •  متیل سیانید  ; سیانو متان

    • Ethanenitrile ; Cyanomethane ; Ethyl nitrile ; Methanecarbonitrile ; Methyl cyanide

  • CAS
    75-05-8
  • فرمول مولکولی
    C2H3N
  • جرم مولکولی
    41/05
  • EINECS
    200-835-2
  • ICB Number
    ICB 3490
استونیتریل
  • شکل و حالت فیزیکی
    مایع بی رنگ
  • نقطه ذوب
    -46 °C
  • نقطه جوش
    81-82 °C (lit.)
  • دانسیته
    0/786 g/cm3
  • فشار بخار
    72/8 mm Hg ( 20 °C)
  • دانسیته بخار
    1/41 (vs air)
  • ضریب شکست (n20/D­­)
    1/344
  • نقطه اشتعال
    48 °F
  • دمای نگهداری
    2-8 °C
  • حلالیت در آب
    محلول در آب
  • اسیدیته (pka)
    25
  • بازیسیته (pkb)
    -11
  • شماره CAS
    75-05-8
  • شماره ثبت تجاری (RBN)
    741857
  • شماره مرک (Merck)
    14,70
  • NIST Chemistry Reference
  • EPA Substance Registry System
  • مراجع MSDS
  • ارائه دهنده
    زبان
  • انگلیسی
  • انگلیسی
  • انگلیسی
  • Chemical Properties
    • Colorless liquid

  • General Description
    • A colorless limpid liquid with an aromatic odor. Flash point 42°F. Density 0.783 c / cm3. Toxic by skin absorption. Less dense than water. Vapors are denser than air.

  • Air & Water Reactions
    • Highly flammable. Water soluble.

  • Reactivity Profile

    Acetonitrile decomposes when heated to produce deadly toxic hydrogen cyanide gas and oxides of nitrogen. Strongly reactive [Hawley]. May react vigorously with strong oxidizing reagents, sulfuric acid, chlorosulfonic acid, sulfur trioxide, perchlorates, nitrating reagents, and nitric acid. [Sax, 9th ed., 1996, p. 20]. Potentially explosive in contact with nitrogen-fluorine compounds (e.g., tetrafluorourea) [Fraser, G. W. et al., Chem. Comm., 1966, p. 532].

  • Synthesis
    • There are many ways of making acetonitrile. Those major ways for industrial production include acetate amination method, acetylene amination method and propylene ammoxidation byproduct method. 1. Acetate amination method use acetate and ammonia as raw materials with reaction being performed at a temperature of 360-420 °C in the presence of aluminum oxide as the catalyst. This is a one-step synthesis method. The reaction mixture is further gone through water absorption and fine distillation to get the final product. Material consumption quantity: acetate (98%) 1763kg /t, ammonia (99.5%) 691kg/t. 2. Acetylene amination method uses ammonia and acetylene as the raw materials and the reaction is carried out at a temperature of 500-600 °C with aluminum oxide being the catalyst. It is again a one-step synthesis approach. Material consumption quantity: acetylene 10231 m3, ammonia (99.4%) 1007 kg/t. 3. Propylene amination and oxidation byproduct method use propylene, ammonia, and air as the raw materials. It produces acrylonitrile with the catalyst while producing acetonitrile as byproducts. Per ton of acrylonitrile can make 25-100kg byproduct of acetonitrile. 4. Made from the dehydration reaction between acetamide and phosphorus pentoxide. 5. Obtained from reaction between dimethyl sulfate and sodium cyanide. Acetonitrile is usually the byproduct of ammoxidation reaction used for producing acrylonitrile. We can also apply acetate amination method with aluminum oxide as the catalyst. Acetonitrile is obtained by one-step reaction at 360 °C. Reaction equation: CH3COOH + NH3 [Al2O3] → CH3CN + 2H2O.

  • Usage
    • Acetonitrile is the raw material for preparing orthoacetate. It is also used as the intermediate of producing DV-acid methyl ester and 2-chloro-3,3,3-trifluoro-1-propenyl-2,2-dimethyl cyclopropanecarboxylate. It can also be used as the raw materials of making pyrimidine derivatives which is the intermediate of sulfonylurea herbicides. Moreover, it can be used for making vitamin B1 in the field of pharmaceutical industry and as the extraction agent of C4 fraction in the synthetic rubber industry. Used as nitrile rubber monomer; Used for pharmaceutical industry and extraction of carbon IV. As standard reference in chromatographic analysis; also as solvent and stationary phase for gas chromatography. The major application of acetonitrile is as a solvent such as solvents for butadiene extraction, solvent for synthetic fibers and solvents for some special paints. In the oil industry, acetonitrile is used as the solvent for removing tar, phenol and other substances from petroleum hydrocarbons. It is also used as the solvent for extracting fatty acids from vegetable and animal oil in the fatty acid industry, and used as the reaction medium of the recrystallization of steroidal drugs in medicine industry. The binary azeotropic mixtures of acetonitrile and water are often used when a polar solvent of high dielectric constant is demanded: containing 84% acetonitrile, boiling point: 76 °C. Acetonitrile is used as the intermediate of pharmaceutical (vitamin B1) and spices, as the raw materials for making the synergist of triazine nitrogenous fertilizer, and also as a denaturant for ethyl alcohol. Moreover, it can also be used for synthesizing ethylamine, acetic acid, etc., and have many applications in textile dyeing and light industry. It is used as the solvent of most inorganic compounds. It is also used as the solvent for spectrophotometric measurement, as a non-aqueous solvent, and as the diluents for determination of the carboxyl group. Furthermore, it is also applied in recrystallization of steroids and extraction of fatty acid, and also used as the solvents of High pressure liquid chromatography (HPLC).

  • Health Hazard

    Exposure to 160 ppm for 4 hours causes flushing of the face and a feeling of constriction in the chest; 500 ppm for brief periods is irritating to the nose and throat. Severe exposures cause irritability, skin eruptions, confusion, delirium, convulsions, paralysis, and death due to central nervous system depression.

  • Preparation products

    1-(3-Aminopropyl)piperidine-->Benzoylacetonitrile-->Methyl 3-(morpholinomethyl)benzoate ,98%-->6-Bromopurine-->4-(2-Hydroxyethoxy)benzaldehyde-->5-BROMO-2-(PYRROLIDIN-1-YL)PYRIMIDINE-->METHYL 3-((PYRROLIDIN-1-YL)METHYL)BENZOATE-->1-BENZYL-2-IMIDAZOLECARBOXYLIC ACID-->Demosan-->CIS-2-AMINOCYCLOHEXANOL HYDROCHLORIDE-->2-Amino-5-chlorobenzonitrile-->BIS(DIISOPROPYLAMINO)CHLOROPHOSPHINE-->(E)-METHYL 3-(4-BROMOPHENYL)ACRYLATE-->2-Hydroxy-5-bromopyridine-->1-Boc-piperazine-->QUINOLINE-2-CARBONITRILE-->4-AMINO-2-BUTANOL-->TRIETHANOLAMINE BORATE-->5-(TRIFLUOROMETHYL)-1-PHENYL-1H-PYRAZOLE-->Dimethyl acetylmethylphosphonate-->1,1'-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex-->1-Naphthalenesulfonyl chloride-->3-AMINO-1-PHENYL-PROPAN-1-OL-->6-CHLORO-[1,2,4]TRIAZOLO[4,3-B]PYRIDAZINE-->4-Methyl-3-nitroanisole-->2,2,2-TRIFLUORO-1-(3-(TRIFLUOROMETHYL)-1-METHYL-1H-PYRAZOL-4-YL)ETHANONE-->1-Phenylimidazole-->1-(1-TERT-BUTYL-3-(TRIFLUOROMETHYL)-1H-PYRAZOL-4-YL)-2,2,2-TRIFLUOROETHANONE-->1-PIPERIDINEPENTANOL-->[1,2-Bis(diphenylphosphino)ethane]dichloropalladium(II)-->CIS-9-TETRADECENYL ACETATE-->Bis(2,4-pentanedionato-O,O')palladium(II)-->6-(BOC-AMINO)-HEXYL BROMIDE-->Dichloro(1,5-cyclooctadiene)palladium(II)-->2-THENOYLACETONITRILE-->Boron trifluoride acetonitrile complex-->ISOPROPYLSULFONYL CHLORIDE-->Hexadecyltrimethylammonium hydroxide-->Bis(acetonitrile)dichloropalladium(II)-->N-Cyano etrhl ethyl midxite

  • Raw materials

    Sulfuric acid -->Potassium hydroxide -->Ammonia-->Potassium permanganate-->Aluminum oxide -->Acrylonitrile-->Ammonium acetate-->Acetamide-->Carbon-->CALCIUM HYDRIDE-->MOLECULAR SIEVE-->Sodium diethyldithiocarbamate-->MOLECULAR SIEVES